Burning Velocities in Catalytically Assisted Self-Propagating High-Temperature Combustion Synthesis Systems

نویسنده

  • T. KIM
چکیده

The current work presents an experimental study of catalytically assisted self-propagating high-temperature synthesis (SHS) of the tantalum/carbon material system. The effects of controlled amounts of two gas-phase transport agents (carbon dioxide and vaporized iodine) were examined. The gas-phase transport agents resulted in burning velocities 2 to 4 times faster than burning velocities observed in comparable catalytically assisted and unassisted Ta/C SHS systems. The gas-phase transport agents clearly augment the combustion synthesis process. The burning velocities of the catalytically assisted, non-melting SHS systems were found to be strong functions of particle size, pressure and the amount of gas-transport agent present. The results are compared with previous studies of both catalytically assisted and unassisted Ta/C SHS, and discussed in the context of proposed transport mechanisms. © 2001 by The Combustion Institute

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUMERICAL SIMULATION OF COMBUSTION SYNTHESIS OF ALUMINIDE INTERMETALLIC COMPOUNDS

Combustion synthesis is a special thermophysico-chemical process applied for production of intermetallic compounds. In the present work, a reaction–diffusion numerical model was developed to analyze the combustion synthesis of aluminide intermetallics by self-propagating high-temperature synthesis process. In order to verify the reliability of the numerical model, an experimental setup was desi...

متن کامل

Synthesis of Al2O3-ZrO2 Nanocomposite by Mechanical Activated Self-propagating High Temperature Synthesis(MASHS) and Ignited via Laser

By consideration of unique properties of composite Al2O3-ZrO2 such as high toughness, high wear resistant and relative low thermal expansion, in this study, nanocomposite of Al2O3-ZrO2 was produced by Mechanical activated Self propagating High-temperature Synthesis (MASHS) using laser beam for ignition. First Al and ZrO2 powders were mixed in the mole ratio of 1:1 and milled for 1, 3 and 6 hour...

متن کامل

EFFECT OF FABRICATION PARAMETERS ON SYNTHESIS OF Ti2AlC AND Ti3AlC2MAX PHASES BY MASHS

Mechanically Activated Self-propagating High temperature Synthesis (MASHS) is the method which is used to promote self-propagating synthesis by increasing activity of reactants and increase the purity of products. In this study Ti 2 AlC and Ti3AlC2 max phases were synthesized by using mechanically activated self-propagating high temperature synthesis (MASHS) and samples reactivity and phase str...

متن کامل

Effect of the temperature difference between gas and organic dust on propagating spherical flames

A new analytical study performed to investigate the effect of the temperature difference between gas and particle in propagation of the spherical flames. The combustible system is containing uniformly distributed volatile fuel particles in an oxidizing gas (Air) mixture. The model includes evaporation of volatile matter of dust particles to known gaseous fuel (methane) and the single-stage reac...

متن کامل

Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing

The existing methods of synthesis of thermoelectric (TE) materials remain constrained to multi-step processes that are time and energy intensive. Here we demonstrate that essentially all compound thermoelectrics can be synthesized in a single-phase form at a minimal cost and on the timescale of seconds using a combustion process called self-propagating high-temperature synthesis. We illustrate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001